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Abstract: We introduce Group Policy Gradient (GPG), a family of critic-free
policy-gradient estimators for general MDPs. Inspired by the success of GRPO’s
approach in Reinforcement Learning from Human Feedback (RLHF), GPG replaces
a learned value function with a group-based Monte Carlo advantage estimator,
removing the memory, compute, and hyperparameter costs of training a critic while
preserving PPO’s clipped-objective structure. We prove the consistency of the GPG
estimator, analyze the bias-variance tradeoffs, and demonstrate empirically that
GPG matches or outperforms PPO on standard benchmarks. GPG makes better use
of parallel simulations, which, together with its critic-free design, results in more
efficient use of computational resources than PPO.

1 Introduction

Reinforcement learning (RL) trains agents to maximize cumulative rewards through interaction with
an environment [1]. Policy gradient methods [2] combined with deep networks excel in domains
from game playing [3] to continuous control [4] and generative modeling [5]. Proximal Policy
Optimization (PPO) [6], with its clipped objective for stable updates, is now a default choice in deep
RL and a core method in Reinforcement Learning from Human Feedback (RLHF) [7] for fine-tuning
language models from human preferences.

Until recently, PPO dominated RLHF, leveraging a learned value function (critic) to reduce variance
in gradient estimates and improve learning efficiency. However, critics add computational and
memory overhead and are prone to approximation errors. Group Relative Policy Optimization
(GRPO) [8] addresses these issues by estimating advantages through a group-based Monte Carlo
approach, removing the need for a value network. This critic-free design enabled large language
models to match or exceed prior RLHF performance, particularly on mathematical reasoning, while
substantially reducing memory and computational cost [9].

Building on the strengths and resource-saving benefits of critic-free, group-based policy gradients,
as well as their success in RLHF, we extend these methods to the broader realm of general RL. Our
contributions are as follows:

• We generalize the GRPO framework and introduce a new critic-free policy gradient algorithm
for general Markov Decision Processes (MDPs), which we call Group Policy Gradient
(GPG). Like GRPO, GPG modifies only the advantage estimation step while preserving the
core structure and benefits of PPO.

• We prove the consistency of our resulting policy gradient estimator under mild assumptions,
showing that it converges in the large-group-size limit.

†These authors contributed equally to this work
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Figure 1: PPO (top) estimates the advantage function using Generalized Advantage Estimation (GAE)
with the aid of a learnt value function. In contrast, GPG (bottom) utilizes group-averaged rewards to
reduce policy gradient variance. GPG avoids learning a value function and makes greater use of the
information in parallel simulations, thereby making better use of computational resources.

• We empirically evaluate GPG on various Gymnasium environments, validating its effec-
tiveness with standard RL benchmarks. We perform ablation studies on design choices and
discuss the practical trade-offs of our method.

2 Background

2.1 Notations and Conventions

We largely follow the convention of the Generalized Advantage Estimation paper [4]: We consider an
undiscounted formulation of the policy optimization problem. The initial state s0 is sampled from the
distribution ρ0. A trajectory τ = (s0, a0, s1, a1, . . . ) is generated by sampling actions according to
the policy at ∼ π(at|st) and sampling the states according to the dynamics st+1 ∼ P (st+1|st, at),
until a terminal (absorbing) state is reached. A reward rt = r(st, at, st+1) is received at each
timestep. The goal is to maximize the expected total reward

∑∞
t=0 rt, which is assumed to be finite

for all policies. Note that we are not using a discount as part of the problem specification; it will
appear below as an algorithm parameter that adjusts a bias-variance tradeoff. But the discounted
problem (maximizing

∑∞
t=0 γ

trt) can be handled as an instance of the undiscounted problem in
which we absorb the discount factor into the reward function, making it time-dependent.

We also utilize standard definitions for Value function and the Q function:

• V π(s) = Eπ [
∑∞

t=0 rt | S0 = s]

• Qπ(s, a) = Eπ [
∑∞

t=0 rt | S0 = s,A0 = a]

For a sampled trajectory τ , we also define the time t γ-discounted total return Rγ
t (τ) =

∑
s≥t γ

s−trs

2.2 Advantage Estimation and Baselines

A crucial result, first observed in [2] and generalized in [4], in policy-gradient algorithms, describes a
family of policy-gradient estimators and is given by the following proposition; See [4] for the proof.
Prop 1. For independent trajectories τ1:N sampled under policy πθ, any estimator of the form

N∑
i=1

T∑
t=1

∇θ log πθ(a
(i)
t |s

(i)
t )Â

(i)
t (1)

2



where Â
(i)
t = q(s

(i)
t:∞, a

(i)
t:∞, r

(i)
t:∞) − b(s

(i)
1:t, a

(i)
1:(t−1)), where q is any function q that satisfying

E[q(s(i)t:∞, a
(i)
t:∞)|st, at] = Q(st, at) and b is any function leads to an unbiased estimator for∇θη.

The quantity Â is often referred to by advantage estimator, and b by baseline. A judicious choice of
q and b leads to lower variance estimates, with b = V πθ the on-policy value function known to give
near-optimal [4] estimates from a variance perspective. However, with V πθ intractable, it is common
in algorithms such as PPO and TRPO to learn an approximate value function V̂ϕ (usually represented
as a neural network, trained concurrently using gradient descent) alongside πθ to reduce variance in
advantage estimation. Well-tuned advantage estimators like Generalized Advantage Estimation [4]
are critical to the success of algorithms like PPO.

2.3 Proximal Policy Optimization

Among policy gradient algorithms, PPO [6] improves training stability by constraining policy updates,
using a relatively cheap clipped surrogate objective:

L = Eτ∼πθold

[
min

{
πθ(at|st)
πθold(at|st)

Ât, clip

(
πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ

)
Ât

}]
(2)

where Ât is commonly computed using truncated GAE:

Ât =

T∑
s=t

(γλ)s−tδs, δt = rt + γV (st+1)− V (st). (3)

PPO is simple and delivers excellent performance on a wide range of tasks, but requires learning a
value network, which is often costly and introduces additional complexity [6, 10, 11].

2.4 Group Relative Policy Optimization

GRPO [8] replaces the learned critic in PPO with a group-based, locally estimated baseline. In
the RLHF-style Outcome-Supervision setting (one scalar reward r(i) per trajectory), GRPO sets
advantages for each trajectory in a batch of size N to the group-normalized reward:

Â
(i)
t =

r(i) −mean(r)

std(r)
, t = 1, . . . , T, (4)

(or the analogous cumulative form for Process Supervision). Equivalently, GRPO applies REIN-
FORCE with a locally estimated baseline, avoiding a learned value network. This critic-free design
drives efficiency gains in LLM fine-tuning [8, 9], but has so far been explored mainly in RLHF
settings rather than general MDPs.

2.5 Other Group-based RL Algorithms

Following GRPO’s success, several RL algorithms adopting group-based advantage estimation have
emerged. Sane [12] propose Hybrid-GRPO, an adaptation of group estimation to general RL environ-
ments, though without clear experimental validation. The recently introduced REINFORCE++ [13]
is effectively PPO with advantage normalization and λGAE = 1, equivalent to replacing GAE with
discounted returns and thus eliminating the critic. While effective in RLHF, it has not been evaluated
in general RL settings. GiGPO [14] extends GRPO by normalizing advantages across episodes and
states from different trajectories within a group, showing strong results on LLM agent benchmarks
but not on broader RL tasks.

3 Group Policy Gradient

In this section, we first introduce a method that computes advantage estimates for each state within a
group of sampled trajectories (Algorithm 2). These estimates are then used by the PPO algorithm to
update the policy, forming the GPG Algorithm (Algorithm 1). We then explore the design space of
GPG methods and present a theoretical result on Group Policy Gradient Estimation.
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Algorithm 1 GPG Update

1: Initialize policy πθ

2: for each iteration do
3: Set πθold ← πθ

4: Collect trajectories group τ1:N under πθ

5: Compute advantage estimates Ân
t c.f Al-

gorithm 2
6: for several epochs do
7: Optimize PPO loss LPPO by gradi-

ent descent on mini-batch estimates
8: end for
9: Update policy πθ via gradient ascent

10: end for

Algorithm 2 GPG Advantage Estimation

Require: Trajectories τ1:N , Binning function f
1: Compute returns Rn

t for all t and n =
1 . . . N

2: Initialize Empty Bins B
3: for n = 1 . . . N do
4: for t = 1 . . . do
5: If f(snt , t) ̸= f(sni , i), i = 1 . . . t−

1, insert Rn
t to B[f(s

(n)
t , t)]

6: end for
7: end for
8: Set Â(n)

t = R
(n)
t −mean(B[f(s

(n)
t , t)]) for

all t, n

3.1 The GPG Method

GPG departs from PPO and GRPO only in how it estimates advantages, making it simple to imple-
ment and scale. It generalizes GRPO’s group-based variance-reduction technique, using a broader
formulation that applies to any RL setting. Unless noted otherwise, we denote R

(i)
t = Rγ

t (τi) the
time t discounted returns for the ith trajectory of the group.

For GPG, we first introduce the concept of a binning function f : S → B where B is a countable
set of bins and S is the timestep-aware state space. We use this to divide the set of states into a
set of bins, with f(s) being the bin state s is in. This in turn lets us define the bin value function
b(s) = Es′∼πθ|f(s′)=f(s)[V (s)] which corresponds to a state-likelihood weighted average of state-
value functions of the bin each state is in. Inspired by Prop 1, we will use estimates of b(s) as our
policy-gradient baseline.

Formally, given independent trajectories τ1:N sampled for a group, we estimate advantages using

Â
(i)
t = R

(i)
t − b̂N (s

(i)
t ) (5)

where b̂N (s) is an estimate of the (on-policy) value function at s from the group trajectories. We take
the estimated state-value b̂N (s) to be the average discounted return from the bin of s i.e

b̂N (s) = mean({R(i)
t |(i, t) : f(sit) = f(s) and t is first visit in τi to a state in bin f(s)}) (6)

We illustrate this advantage calculation in Algorithm 1 and Algorithm 2. In our paper, we consider
several different possibilities of f , based on time and spatial partitioning of the states. We will see in
the experimental section that for the purposes of policy gradient estimation, there is a need to strike a
balance in the bin granularity, with both too fine or too coarse a bin size being counter-productive to
agent learning. Here, we highlight 4 bin functions to give examples:

• f(s, t) = 0, where only 1 bin is present

• f(s, t) = t, where an average baseline is computed for each timestep

• f(s, t) = ϵ · Round(s/ϵ) the discretization of space into ϵ-sized packets, for continuous
state spaces in Rd.

• f(s, t) = s for discrete state spaces, where each state is its own bin

Relation of GPG to GRPO, PPO and Sampling Methods: Our framework generalizes GRPO
with Outcome Supervision. To see this, note that Outcome supervision corresponds to using the
trivial binning function f(s) = 0, ∀s ∈ S, where the same mean reward (equal to return when only
a terminal reward is given) is subtracted as the baseline for all states, as well as PPO advantage
normalization [15] afterwards. Moreover, using f(s) = 0 with advantage normalization also
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corresponds to the REINFORCE++ Algorithm [13]. Similarly, process supervision can be interpreted
as subtracting a group-estimated baseline from the Rn

t s, then normalizing. The subtracted baseline
depends only on the timestep used, which bears similarity to the choice f(s, t) = t. In general, our
algorithm is identical to PPO and GRPO, with the sole difference being in our advantage-estimation
mechanism.

We further note that the idea of using group-estimated quantities for estimation variance reduction
has its roots in Monte-Carlo literature, such as with control variates [16]. The trade-off between
a learned and group-estimated control variate also features in GFlownet and Variational Inference
literature, such as through comparing the Vargrad and Trajectory Balance Losses [17, 18].

Remark: The form we choose to take for the binning function is not the most general. In fact, as
Prop 1 suggests, the binning function can be modified suitably to take the whole history up to time t
as input. However, for simplicity, we only study binning functions of the current state.

3.2 Theoretical Guarantees of GPG

Many Policy Gradient Algorithms, ranging from the simple REINFORCE [2] method to PPO itself,
has the property that if only one gradient step is taken over each batch of data, then as the batch size
tends to infinity the gradient update converges in probability to the true policy gradient∇θη(θ). Here,
we prove the corresponding statement for GPG. We omit technical conditions and only present a
proof sketch here, deferring the full proof and details to the Appendix A.

Prop 2. Consider a MDP environment without discounting and with fixed duration T steps1. For a
group of N iid trajectories τ1:N sampled from πθold , the GPG Policy-Gradient estimator is

∇θLN = ∇θ

[
1

N

N∑
n=1

T∑
t=1

min(Ân
t

πθ(a
n
t |snt )

πθold(a
n
t |snt )

, Ân
t clip(

πθ(a
n
t |snt )

πθold(a
n
t |snt )

, 1− ϵ, 1 + ϵ))

]
(7)

where as before An
t = R

(i)
t − b̂N (snt ) for some countably-valued binning function f . Then we have

(i) In the case of one update per group i.e πθ = πθold , we have

∇θLN = ∇θ

[
1

N

N∑
n=1

T∑
t=1

Ân
t

πθ(a
n
t |snt )

πθold(a
n
t |snt )

]
=

1

N

N∑
n=1

T∑
t=1

Ân
t∇θ log πθ(a

n
t |snt ) (8)

(ii) Moreover in the one update case, assuming some regularity assumptions (see Appendix A), the
GPG gradient estimator is a consistent estimator (in group size N ) of the policy gradient i.e

∇θLN −→P ∇θη(τ) (9)

Proof Sketch: (i) is the same as a well-known result for PPO and GRPO (c.f [10] or [8]). For
(ii), a direct application of the strong law of large numbers (SLLN) is not possible as the Ân

t is not
independent for different trajectories. Nevertheless, the proof makes heavy use of SLLN, and follows
the intuition that for all s, b̂N (s)→almost sure b(s) as N →∞, for the bin-value function b(s). This is
a valid baseline function as per Prop 1. Some care must be taken when there is an infinite number
of bins, but we can show that for sufficiently large group sizes, we can visit most of the states (in a
likelihood weighted sense) sufficiently often to get good estimates of b(s) for each state.

Corollary: We can also show that the GRPO Policy-Gradient estimator is a consistent estimator of
the normalized policy gradient∇θη(τ)/std(R1). To see that, note that the GRPO gradient estimator

is gggN = ∇LN

σ̂N
where σ̂N =

√
1
N

∑N
i=1(R

i
1)

2 −
(

1
N

∑N
i=1(R

i
1)
)2

is the usual standard deviation

estimator of the total returns. By standard results we have that σ̂N →P std(R1), and so by Slutsky’s
Lemma we have the desired result gggN →P ∇θη(τ)/std(R1).

1This constraint, merely for ease of notation and analysis, is easily relaxable
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Figure 2: Average episodic reward of GPG and PPO for different numbers of parallel environments.
For clarity, we plot on a logarithmic scale for the CliffWalker environment. Given a large number of
parallel environments, GPG dominates on all tasks.

4 Experiments

We conduct a comprehensive comparison between PPO and GPG across a suite of reinforcement
learning environments from the OpenAI Gymnasium library [19]. Additionally, we present ablation
studies to further analyze performance differences.

4.1 Experimental Setup

We build GPG by modifying the advantage-estimation component of the reference CleanRL PPO
implementation [20], and otherwise reuse standard PPO hyperparameters when applicable. In GPG
each rollout from a vectorized environment forms a group, so the nominal group size equals the
number of parallel environments (automatic resets can increase the effective size). Because GPG
can be sensitive to group size, we sweep the number of parallel environments and report evaluation
reward curves for PPO and GPG (5 evaluation seeds, 4 training seeds per configuration), training
each run for 200 iterations. All GPG experiments use the time-binning f(s, t) = t. We evaluate on
four Gymnasium tasks (CartPole, CliffWalker, LunarLander, HalfCheetah) using default environment
parameters; further implementation and hyperparameter details are in Appendix B.

4.2 Results

Compared to PPO, GPG exhibits strong performance on all tasks. We comment on the following.

Performance of different methods: As indicated in Figure 2, both PPO and GPG generally benefit
from larger numbers of parallel environments. However, due to its use of group-based baselines, the
improvement from this parallelism is more pronounced for GPG, similar to GRPO and as hinted by
the proof of Prop 2. As a result, for all considered tasks, GPG with large group size performs the
best, as displayed in Table 1 or Figure 2.

Sample Efficiency: For a fixed number of parallel environments, GPG matches PPO in sample
efficiency. In some tasks, such as LunarLander or Half-Cheetah (Figure 2), PPO learns slightly faster
early on, but GPG reliably catches up, and with large group sizes, often surpasses PPO. As shown
in Figure 3, increasing the number of parallel environments reduces sample efficiency: for a fixed
budget of environment steps, training with fewer environments over more iterations generally yields
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Table 1: Rewards for GPG and PPO for various numbers of parallel environments (equivalent to
group size for GPG) after 200 Iterations. GPG with group size 128 exhibits dominant performance
on all benchmarks.

# Rollouts Algorithm CartPole CliffWalker Half-Cheetah Lunarlander

1 GPG 255.73±44.20 −261.30±70.56 333.70±94.87 −18.78±6.76

PPO 205.82±10.05 −442.93±73.40 679.33±278.55 −19.58±12.73

4 GPG 388.65±23.65 −17.45±0.11 1031.65±24.77 74.29±10.33

PPO 316.85±31.80 −17.62±0.15 1346.30±15.33 117.77±5.39

16 GPG 428.05±33.31 −17.00±0.00−17.00±0.00−17.00±0.00 1000.05±130.02 75.81±12.26

PPO 423.17±22.28 −17.00±0.00−17.00±0.00−17.00±0.00 736.45±149.77 157.59±10.03

32 GPG 481.10±10.85 −17.15±0.09 1940.86±142.08 169.67±20.79

PPO 442.80±15.04 −17.00±0.00−17.00±0.00−17.00±0.00 1142.48±570.77 157.77±10.00

128 GPG 495.45±2.13495.45±2.13495.45±2.13 −17.00±0.00−17.00±0.00−17.00±0.00 2773.61±222.932773.61±222.932773.61±222.93 257.39±0.80257.39±0.80257.39±0.80

PPO 474.20±7.61 −17.00±0.00−17.00±0.00−17.00±0.00 1516.90±305.42 200.97±4.42
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Figure 3: Average episodic rewards for GPG with varying numbers of parallel environments are
shown, plotted against the number of evaluated environment steps on a logarithmic scale for clarity.
While increasing the number of parallel environments generally reduces sample efficiency, requiring
more total environment interactions (but fewer iterations) to reach a given performance threshold, it
leads to higher iteration-based performance.

better results. This is intuitive: more iterations give the agent more opportunities to refine its policy,
and sequential updates are more expressive than an equivalent amount of parallel computation.

However, small environment counts tend to cap final performance below what large group sizes can
achieve, as demonstrated in Table 1. In other words, more parallel environments improve iteration-
based performance at the cost of sample efficiency. In settings where parallel simulation is cheap and
abundant, iteration-based performance becomes the more relevant metric, and our experiments show
that GPG excels under such conditions.

4.3 Ablation Studies

We compare four types of binning functions on the LunarLander task:

1. Time-based binning: f(s, t) = t, where the baseline value is averaged over samples in the
same timestep.
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Figure 4: Average episodic reward of GPG on LunarLander with different binning functions.

2. Universal binning: f(s, t) = 0, where all samples share a single bin, regardless of state or
time.

3. Spatial-based binning: f(s, t) = ϵ ·Round(s/ϵ), which discretizes the continuous state
space into bins of size ϵ along each dimension. To keep this manageable, we test ϵ = 1.0,
0.5, and 0.2 uniformly across all state dimensions.

4. Spatial-time-based binning: f(s, t) = {ϵ ·Round(s/ϵ), t}, combining spatial and time-
based binning. States are grouped only if they fall into the same spatial bin and occur at the
same timestep.

These choices trade bias and variance: coarser bins reduce bias but keep high variance (like REIN-
FORCE), while very fine bins lower variance at the cost of bias and small-sample issues. Figure 4
summarizes results. Universal binning consistently underperforms time-based binning. Spatial
binning rarely beats time-based binning except at large environment counts, indicating heterogeneous
returns within spatial bins. Spatial-time-based matches time-based performance at small parallelism
but improves as the number of environments grows: ϵ = 1.0 works best at 1–4 envs, ϵ = 0.5 at inter-
mediate counts (16–32), and ϵ = 0.2 only matches coarser settings once parallelism is very large (128
envs). This progression underscores how increased environment counts mitigate low-sample issues in
finer-grained bins. When more environments are available, the higher trajectory count neutralizes the
bias from small sample sizes in each bin. As a result, finer-grained binning becomes advantageous,
offering better variance reduction and ultimately leading to faster, more stable convergence.

5 Conclusion

We propose Group Policy Gradient (GPG), a simple generalization of PPO and GRPO that replaces
the learned critic with a group-based advantage estimator. We prove consistency of the GPG policy-
gradient estimator and provide empirically validated guidelines for key design choices (notably
group size and binning). Empirically, we demonstrate that GPG matches or exceeds PPO on a
suite of standard benchmarks, and analyze its practical tradeoffs and limitations. By replacing the
value network with a group-estimated baseline, GPG reduces memory and computational overhead,
making it especially attractive when training a critic is costly or unstable, as well as utilizing parallel
simulations more efficiently. We hope this study motivates further analysis of variance reduction
mechanisms, such as through group baselines, in policy gradient algorithms.
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A Formal Statement and Proof of Prop 2

Technical Conditions: Assume the regularity condition that supθ,s,a ∥∇θ log πθ(a|s)∥ = C <∞
and that all rewards per action are bounded in magnitude by rmax < ∞. Assume further that the
policy have nonzero probabilities of visiting states in every bin.

Proof:

(i): Same as discussed in [8] A.1.6. When πθ = πθold the clip and min operations are irrelevant,
leading to the first equality. The final equality uses the fact that∇θ log f(θ) =

∇θf(θ)
f(θ) .

∇θLN = ∇θ

[
1

N

N∑
n=1

T∑
t=1

Ân
t

πθ(a
n
t |snt )

πθold(a
n
t |snt )

]

=
1

N

N∑
n=1

T∑
t=1

Ân
t

∇θπθ(a
n
t |snt )|θ=θold

πθold(a
n
t |snt )

=
1

N

N∑
n=1

T∑
t=1

Ân
t∇θ log πθ(a

n
t |snt )

(10)

(ii): Starting from the simplified form of the gradient in (i), we have

∇LN =
1

N

[
N∑

n=1

T∑
t=1

(Rn
t + b(snt ))∇θ log πθ(a

n
t |snt ) +

N∑
n=1

T∑
t=1

(b̂N (snt )− b(snt ))∇θ log πθ(a
n
t |snt )

]

where recall b(s) = Es′∼πθ|f(s′)=f(s)[V (s)] = Eτ,s′0∼πθ|f(s′0)=f(s)[R(s′0)] is the average (weighted
by the policy distribution over states) value function (or equivalently expected forward-return) of a
state in the same bin as s. Observe that for n = 1 . . . N ,

T∑
t=1

(Rn
t + b(snt ))∇θ log πθ(a

n
t |snt )

is now independently and identically distributed, and moreover corresponds to the REINFORCE
gradient estimator with baseline b. As ∇θ log πθ(a

n
t |snt ) is bounded and rnt (and by consequence Rn

t

and b(snt )) is bounded, the Law of Large Numbers is applicable and thus by Prop 1 we have

1

N

[
N∑

n=1

T∑
t=1

(Rn
t + b(snt ))∇θ log πθ(a

n
t |snt )

]
→P E[

T∑
t=1

(Rt + b(st))∇θ log πθ(at|st)]

= ∇θη(θ)

(11)

Recall standard results that if Xn →P c and Yn →P d then Xn + Yn →P c+ d and XnYn →P cd.
To establish (ii), it thus suffice to show that

1

N

[
N∑

n=1

T∑
t=1

(b̂N (snt )− b(snt ))∇θ log πθ(a
n
t |snt )

]
→P 000 (12)

We will show this by checking N →∞,

KN = Eτ1:N∼πθ

[∥∥∥∥∥ 1

N

N∑
n=1

T∑
t=1

(b̂N (snt )− b(snt ))∇θ log πθ(a
n
t |snt )

∥∥∥∥∥
]
→ 0 (13)

as convergence in L1 implies convergence in P. The key intuition guiding this part of the proof is
that for sufficiently large group sizes, we can visit most of the bins (in a visit frequency weighted
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sense) sufficiently often to get good baseline estimates. By triangle inequality and boundedness, have

KN ≤ E

[
1

N

N∑
n=1

T∑
t=1

|b̂N (snt )− b(snt )|∥∇θ log πθ(a
n
t |snt )∥

]

≤ E

[
C

N

N∑
n=1

T∑
t=1

|b̂N (snt )− b(snt )|

] (14)

Now observe that
∑T

t=1 |b̂N (snt )− b(snt )| is identically distributed for n = 1 . . . N (by symmetry)
so by linearity of expectation we obtain

E

[
C

N

N∑
n=1

T∑
t=1

|b̂N (snt )− b(snt )|

]
= CE

[
T∑

t=1

|b̂N (sNt )− b(sNt )|

]
= C

T∑
t=1

E
[
|b̂N (sNt )− b(sNt )|

]

Next, let β : B → R be the mapping from bins to expected-bin value (i.e β(f(s)) = b(s)) and β̂N to
be the empirical bin value function from τ1:N (i.e such that β̂N (f(s)) = b̂N (s)). Then we have

CE

[
T∑

t=1

|b̂N (sNt )− b(sNt )|

]
= CE

[
T∑

t=1

|β̂N (f(sNt ))− β(f(sNt ))|

(∑
x∈B

1f(sNt )=x

)]

= CE

[∑
x∈B

T∑
t=1

|β̂N (x)− β(x)|1f(sNt )=x

]

= C
∑
x∈B

T∑
t=1

E
[
|β̂N (x)− β(x)|1f(sNt )=x

]

= C
∑
x∈B

T∑
t=1

E
[
|β̂N (x)− β(x)| |bin x nonempty

]
E[1f(sNt )=x]

(15)
where the last equality follows from the fact that β̂N (x) depends only on rewards which happen
after visiting x, and where we switch order of summation and expectation by convergence theorems.
Letting ρ(x) = E[

∑T
t=1 1f(sNt )=x], we have

CE

[
T∑

t=1

|b̂N (sNt )− b(sNt )|

]
= C

∑
x∈B

E
[
|β̂N (x)− β(x)| |bin x nonempty

] T∑
t=1

E[1f(sNt )=x]

= C
∑
x∈B

ρ(x)E
[
|β̂N (x)− β(x)| |bin x nonempty

]
(16)

It thus remains to show
∑

x∈B ρ(x)Eτ1:N

[
|β̂N (x)− β(x)| |bin x nonempty

]
→ 0 as N →∞. Let

ϵ > 0 be given in the definition of convergence. We use several facts and observations:

• As rewards are bounded in magnitude and there are T total steps, |β̂N (x)|, |β(x)| ≤ rmaxT

always. Consequently, |β̂N (x)− β(x)| ≤ 2rmaxT

• For N trajectories, the number of samples in bin x, Nx (i.e the number of trajectories that
visit a bin x state), has Nx → ∞ for all x ∈ B almost surely, due to the non-zero visit
probability assumption. As such, the returns falling in bin x are all independently distributed
(as they’re from different trajectories by first-visit assumption), and identically distributed
according to R(s), s ∼ πθ|f(s) = x. Thus, as rewards are bounded, SLLN applies to β̂N (x)

and so β̂N (x)→ β(x) almost surely for all x ∈ B.

• Moreover, since as mentioned β̂N and β are bounded by rmaxT always, the bounded
convergence theorem shows that E[|β̂N (x)− β(x)|]→ 0 as N →∞ for all x
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•
∑

x∈B ρ(x) = E[
∑T

t=1 1snt is any state] = T is finite

• As B is countable, it is possible to pick T ⊂ B finite that
∑

s∈B\T ρ(s) < δ for any
δ > 0 (for instance by enumerating the bins and truncating the sequence per definition of
convergence)

Thus, pick T such that
∑

s/∈T ρ(s) < ϵ
6rmaxT

. As T is finite, supx∈T E[|β̂x(s) − β(s)|] → 0 (a
finite number of sequences converge uniformly). Thus, there exist MT such that for all N > MT ,
have supx∈T E[|β̂N (x)− β(x)|] ≤ ϵ

3T . Then we have for N > MT :∑
x∈B

ρ(x)E
[
|β̂N (x)− β(x)|

]
=
∑
x∈T

ρ(x)E
[
|β̂N (x)− β(x)|

]
+
∑

x∈B\T

ρ(x)E
[
|β̂N (x)− β(x)|

]
≤ sup

x∈T
E[|β̂N (x)− β(x)|]

∑
x∈T

ρ(x) +
∑

x∈B\T

ρ(x)E [2rmaxT ]

≤ ϵ

3T

∑
x∈T

ρ(x) + 2rmaxT
∑

x∈B\T

ρ(x)

≤ ϵ

3T
T + 2rmaxT

ϵ

6rmaxT

=
2ϵ

3
< ϵ

This establishes KN → 0 as N →∞. It thus follows that

1

N

N∑
n=1

T∑
t=1

Ân
t∇θ log πθ(a

n
t |snt )→P ∇θη(θ)

as required □

B Environments

Cart Pole A pole is attached to a cart that moves along a track. The goal is to push the cart left or
right to keep the pole upright. The environment features a continuous observation space representing
the cart’s (angular) position and velocity, and a discrete action space with left and right movements.
Reference hyper-parameters are given in the CleanRL implementation.

Cliff Walking The agent must traverse a 4× 12 grid world from the bottom-left to the bottom-right
corner, avoiding a cliff along the bottom row. The observation space is discrete, representing the
agent’s grid position, while the action space consists of four directional moves: up, down, left, and
right. Reference hyper-parameters are given in the CleanRL implementation.

Lunar Lander A lander starts from the top of the environment and must safely land on a designated
pad. The agent receives continuous observations of its position, velocity, angle, angular velocity,
and leg-ground contact status. The action space is discrete, controlling the main engine and two
orientation engines (left and right). Rewards and penalties are provided for successful landings,
crashes, proximity to the landing pad, velocity reduction, and engine usage. Reference hyper-
parameters are obtained from [21].

MuJoCo Half Cheetah MuJoCo (Multi-Joint dynamics with Contact) is a physics-based robotics
simulation. The Half Cheetah environment features a cheetah-like robot with two legs and six joints.
The agent applies torques to the joints to propel the robot forward as quickly as possible. Both the
observation and action spaces are continuous. Reference hyper-parameters are given in the CleanRL
implementation.
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